
MPIFX
Release 1.4.0

B. Aradi

Sep 02, 2023





Contents

1 About MPIFX 1

2 Compiling and installing MPIFX 3

3 Using MPIFX 5

4 List of routines 7

5 License 9

i



ii



Chapter 1
About MPIFX

MPIFX is a library containing modern Fortran (Fortran 2003) wrappers around MPI routines. The goal is to make
the use of MPI as simple as possible in Fortran.

Consider for example a simple MPI broadcast. In order to broadcast an integer array with 25 elements using the
legacy MPI routine, you have to issue:

call mpi_bcast(myarray, 25, MPI_INTEGER, 0, MPI_COMM_WORLD, error)

Additional to the object to be broadcasted and the communicator, you also must specify following arguments:

• type of the array (which is redundant, as it is known at compile-time)

• size of the array (which is redundant, as it is known at run-time)

• root node of the broadcast (setting it to the lead node as default would be a definitely safe choice)

• error flag (one could per default just omit it and rely on the program to stop if a problem arised, similar as
done in Fortran for allocations)

Using MPIFX the call above is as simple as:

call mpifx_bcast(comm, myarray)

No redundant arguments, sensible defaults. Nevertheless the full functionality is still available via optional param-
eters if needed. E.g. if you wanted to handle the error flag yourself (making sure an error won’t stop your code),
you could call:

call mpifx_bcast(comm, myarray, error=ierr)

A few essential communication routines are already covered (see List of routines (page 7)). If your desired MPI-
routine is not among them yet, you are cordially invited to extend MPIFX and to share it in order to let others
profit from your work (MPIFX is licensed under the simplified BSD license). For more details see the project
page.

1

https://github.com/dftbplus/mpifx/
https://github.com/dftbplus/mpifx/
https://github.com/dftbplus/mpifx/


MPIFX, Release 1.4.0

2 Chapter 1. About MPIFX



Chapter 2
Compiling and installing MPIFX

In order to compile MPIFX, you need following prerequisites:

• Fortran 2003 compiler,

• Python (2.6, 2.7 or any 3.x release)

• GNU Make.

There are basically two different ways of using the library in your project:

• Precompiling the library (page 3) and linking it later to your project.

• Compiling the library during your build process (page 3).

Both are described below.

2.1 Precompiling the library

In order to create a precompiled library

1. Copy the file make.arch.template to make.arch in the root directory of the source and customize the settings
for the compilers and the linker according to your system.

2. Issue make to build the library.

3. Issue make install to copy the library and the module files to the installation destination.

During the build process of your project, you may link the library with the -lmpifx option. Eventually, you may
need to specify options for your compiler and your linker to specify the location of those directories. Assuming
you’ve put the module files in the directory <MODFILEDIR> and the library file in <LIBRARYDIR>, you would
typically invoke your compiler for the source files using the libmpifx_module as:

F2003_COMPILER -I<MODFILEDIR> -c somesource.f90

and link your object files at the end with:

LINKER -I<LIBRARYDIR> somesource.o ... -L<LIBRARYDIR> -lmpifx

2.2 Compiling the library during your build process

In order to build the library during the build process of your project:

1. Copy the content of the lib/ folder into a separate folder within your project.

3



MPIFX, Release 1.4.0

2. During the make process of your project, invoke the library makefile (make.build) to build the module files
and the library in the folder where you’ve put the library sources.

You must pass the compiler and linker options via variable defintions at the make command line. Assum-
ing that the variables $(FXX), $(FXXOPT), $(LN) and $(LNOPT), $(FYPP) and $(FYPPOPT) contain the
Fortran compiler, the Fortran compiler options, the linker, the linker options, the Fypp preprocessor and its
options, respectively, you would have something like:

libmpifx.a:
$(MAKE) -C $(MPIFX_BUILDDIR) \

FXX="$(FXX)" FXXOPT="$(FXXOPT)" \
LN="$(LN)" LNOPT="$(LNOPT)" \
FYPP="$(FYPP)" FYPPOPT="$(FYPPOPT)" \
-f $(MPIFX_SRCDIR)/make.build

in the makefile of your project with $(MPIFX_SRCDIR) being the directory where you’ve put the source of
MPIFX and $(MPIFX_BUILDDIR) where the build of the library should be done.

You should also have a look at the Umakefile in the root folder of MPIFX, which uses exactly the same technique
to compile the library.

4 Chapter 2. Compiling and installing MPIFX



Chapter 3
Using MPIFX

Before you can use the MPIFX routines you need the following steps:

1. Use the module libmpifx_module in your routines.

2. Initialize the MPI framework via the mpifx_init() routine. (If you already initialized it via the legacy
mpi_init() call, you should omit this step.

3. Initialize a communicator of type(mpifx_comm).

Below you find a self containing example for reduction on all processes using a wrapper around mpi_allreduce():

program test_allreduce
use libmpifx_module
implicit none

integer, parameter :: dp = kind(1.0d0)

type(mpifx_comm) :: mycomm
integer :: vali0, resvali0
real(dp) :: valr(3), resvalr(3)

call mpifx_init()
call mycomm%init()

! Reduce scalar value
vali0 = mycomm%rank * 2 ! Some arbitrary number
write(*, "(I2.2,'-',I3.3,'|',1X,A,I0)") 1, mycomm%rank, &

& "Value to be operated on:", vali0
call mpifx_allreduce(mycomm, vali0, resvali0, MPI_SUM)
write(*, "(I2.2,'-',I3.3,'|',1X,A,I0)") 2, mycomm%rank, &

& "Obtained result (sum):", resvali0

! Reduce vector
valr(:) = [ real(mycomm%rank + 1, dp) * 1.2, &

& real(mycomm%rank + 1, dp) * 4.3, real(mycomm%rank + 1, dp) * 3.8 ]
write(*, "(I2.2,'-',I3.3,'|',1X,A,3F8.2)") 3, mycomm%rank, &

& "Value to be operated on:", valr(:)
call mpifx_allreduce(mycomm, valr, resvalr, MPI_PROD)
write(*, "(I2.2,'-',I3.3,'|',1X,A,3F8.2)") 4, mycomm%rank, &

& "Obtained result (prod):", resvalr(:)
call mpifx_finalize()

end program test_allreduce

When running on 4 processors:

5



MPIFX, Release 1.4.0

mpirun -n 4 test_allreduce | sort

you should obtain the following output:

01-000| Value to be operated on:0
01-001| Value to be operated on:2
01-002| Value to be operated on:4
01-003| Value to be operated on:6
02-000| Obtained result (sum):12
02-001| Obtained result (sum):12
02-002| Obtained result (sum):12
02-003| Obtained result (sum):12
03-000| Value to be operated on: 1.20 4.30 3.80
03-001| Value to be operated on: 2.40 8.60 7.60
03-002| Value to be operated on: 3.60 12.90 11.40
03-003| Value to be operated on: 4.80 17.20 15.20
04-000| Obtained result (prod): 49.77 8205.12 5004.33
04-001| Obtained result (prod): 49.77 8205.12 5004.33
04-002| Obtained result (prod): 49.77 8205.12 5004.33
04-003| Obtained result (prod): 49.77 8205.12 5004.33

Have a look at the test folder in the source tree for further examples.

6 Chapter 3. Using MPIFX



Chapter 4
List of routines

You can generate the list and the description of the MPIFX routines via doxygen (see folder doc/doxygen/ in the
source tree).

7



MPIFX, Release 1.4.0

8 Chapter 4. List of routines



Chapter 5
License

MPIFX is licensed under the simplified BSD license:

Copyright (c) 2018, Bálint Aradi

All rights reserved.

Redistribution and use in source and binary forms, with or without modification,
are permitted provided that the following conditions are met:

* Redistributions of source code must retain the above copyright notice,
this list of conditions and the following disclaimer.

* Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR
ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

9


	About MPIFX
	Compiling and installing MPIFX
	Using MPIFX
	List of routines
	License

